Star formation in the nearby dwarf galaxy DDO 53: interplay between gas accretion and stellar feedback
Egorov, Oleg V.; Lozinskaya, Tatiana A.; Vasiliev, Konstantin I.; Yarovova, Anastasiya D.; Gerasimov, Ivan S.; Kreckel, Kathryn; Moiseev, Alexei V.
Germany, Russia
Abstract
We present the results of a multiwavelength study of the nearby dwarf galaxy DDO 53 - a relatively isolated member of the M 81 group. We analyse the atomic and ionized gas kinematics (based on the observations with Fabry-Perot interferometer in H α line and archival data in H I 21 cm line), distribution, excitation, and oxygen abundance of the ionized gas (based on the long-slit and integral-field spectroscopy and on imaging with narrow-band filters), and their relation with the young massive stars (based on archival HST data). We detect a faint 2-kpc sized supershell of ionized gas surrounding the galaxy. Most probably, this structure represents a large-scale gas outflow, however, it could be also created by the ionizing quanta leaking from star-forming regions to the marginally detected atomic hydrogen surrounding the galactic disc. We analyse the properties of the anomalous H I in the north part of the galaxy and find that its peculiar kinematics is also traced by ionized gas. We argue that this H I feature is related to the accreting gas cloud captured from the intergalactic medium or remaining after the merger event occurred >1 Gyr ago. The infalling gas produces shocks in the interstellar medium and could support the star formation activity in the brightest region in DDO 53.