Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations

Mancuso, S.; Garzelli, M. V.

Italy, Slovenia

Abstract

Faraday rotation measures (RMs) of the polarized emission from extragalactic radio sources occulted by the coronal plasma were used to infer the radial profile of the inner heliospheric magnetic field near the solar minimum. By inverting LASCO/SOHO polarized brightness (pB) data taken during the observations in May 1997, we retrieved the electron density distribution along the lines of sight to the sources, which allowed us to separate the two plasma properties that contribute to the observed RMs. By comparing the observed RM values with those theoretically predicted by a power law model of the radial component of the coronal magnetic field using a best-fitting procedure, we found that the radial component of the inner heliospheric magnetic field can be nicely approximated by a power law of the form Br = 3.76 r-2.29 G in a range of heights from about 5 to 14 R. Finally, our analysis suggests that the radial computation of the potential field source surface model from the Wilcox Solar Observatory is the preferred choice near solar minimum assuming a radial field in the photosphere and a source surface located at Rss = 2.5 R.

2013 Astronomy and Astrophysics
SOHO 21