Solar Magnetic Fields as a Clue for the Mystery of the Permanent Solar Wind and the Solar Corona
Nikolskaya, K. I.; Mogilevsky, M. A.
Russia
Abstract
We analyze, generalize, and interpret the data for the permanent solar wind (PSW) velocities measured on board of Ulysses (SWOOPS). A finding of a principal importance extracted from Ulysses' observations is a discovery of the clear-cut inverse coupling between the SW velocities and the solar magnetic fields (SMF) (the stronger close MF, the slower SW, and vice versa), which points to the solar wind plasma deceleration by the SMFs below the source surface. Taking SMF into consideration leads to the alternative paradigm of the SW: flow deceleration instead of the acceleration. In such a case, both the SW and solar corona are converted into products of the interaction of an initial high-velocity plasma outflow ejected from the photosphere by solar magnetic fields. The latter not only divide initial fluxes into fast and slow parts, but also create and heat the corona through capture and stoppage of plasma in magnetic traps and the subsequent plasma heating. Observational arguments are presented in favor of the suggested idea.