The Gigaelectronvolt Counterpart of VER J2019+407 in the Northern Shell of the Supernova Remnant G78.2+2.1 (γ Cygni)

Fraija, N.; Araya, M.

Mexico, Costa Rica

Abstract

Analysis of gamma-ray emission from the supernova remnant G78.2+2.1 (γ Cygni) with 7.2 years of cumulative data from the Fermi Large Area Telescope shows a distinct hard, bright, and extended component to the north of the shell coincident with the known teraelectronvolt source VER J2019+407. In the gigaelectronvolt to teraelectronvolt (GeV-TeV) energy range, its spectrum is best described by a broken power law with indices 1.8 below a break energy of 71 GeV and 2.5 above the break. A broadband spectral energy distribution is assembled, and different scenarios for the origin of the gamma rays are explored. Both hadronic and leptonic mechanisms are able to account for the GeV-TeV observations. In the leptonic framework, a superposition of inverse Compton and nonthermal bremsstrahlung emissions is needed, whereas the hadronic scenario requires a cosmic-ray population described by a broken power-law distribution with a relatively hard spectral index of ∼1.8 below a break particle energy of 0.45 TeV. In addition, the neutrino flux expected from cosmic-ray interactions is calculated.

2016 The Astrophysical Journal
INTEGRAL 21