Searching for the Signature of the Magnetic Fields at the Base of the Solar Convection Zone with Solar Cycle Variations of p-Mode Travel Time

Chou, Dean-Yi; Serebryanskiy, Alexander

Taiwan

Abstract

We study the solar cycle variations of the solar p-mode travel time for different wave packets to probe the magnetic fields at the base of the solar convection zone. We select the wave packets that return to the same spatial point after traveling around the Sun with integral number of bounces. The change in one-bounce travel time at solar maximum relative to minimum is approximately the same for all wave packets studied except a wave packet whose lower turning point is located at the base of the convection zone. This particular wave packet has an additional decrease in travel time at solar maximum relative to other wave packets. The magnitude of the additional decrease in travel time for this particular wave packet increases with solar activity. This additional decrease in travel time might be caused by the magnetic field perturbation and sound speed perturbation at the base of the convection zone. With the simplified assumption that this additional decrease is caused only by the magnetic field perturbation at the base of the convection zone, the field strength is estimated to be about (4-7)×105 G at solar maximum if the filling factor is unity. However, the measured travel times of other wave packets propagating close to the base of the convection zone do not support this simplified interpretation.

2002 The Astrophysical Journal
SOHO 24