Solar Magnetic Field Signatures in Helioseismic Splitting Coefficients
Basu, Sarbani; Antia, H. M.; Baldner, Charles S.; Larson, Timothy P.
United States, India
Abstract
Normal modes of oscillation of the Sun are useful probes of the solar interior. In this work, we use the even-order splitting coefficients to study the evolution of magnetic fields in the convection zone over solar cycle 23, assuming that the frequency splitting is only due to rotation and a large-scale magnetic field. We find that the data are best fit by a combination of a poloidal field and a double-peaked near-surface toroidal field. The toroidal fields are centered at r 0 = 0.999 R sun and r = 0.996 R sun and are confined to the near-surface layers. The poloidal field is a dipole field. The peak strength of the poloidal field is 124 ± 17 G. The toroidal field peaks at 380 ± 30 G and 1.4 ± 0.2 kG for the shallower and deeper fields, respectively. The field strengths are highly correlated with surface activity. The toroidal field strength shows a hysteresis-like effect when compared to the global 10.7 cm radio flux. The poloidal field strength shows evidence of saturation at high activity.