First detection of VHE γ-rays from SN 1006 by HESS
Klochkov, D.; Santangelo, A.; Quirrenbach, A.; Ripken, J.; Conrad, J.; Farnier, C.; Lemoine-Goumard, M.; Reimer, O.; Ryde, F.; Tibolla, O.; Venter, C.; Schlickeiser, R.; Petrucci, P. -O.; Giebels, B.; Stawarz, Ł.; Sikora, M.; Fontaine, G.; Daniel, M. K.; Hauser, M.; Vink, J.; Boisson, C.; Aharonian, F.; Akhperjanian, A. G.; Bazer-Bachi, A. R.; Beilicke, M.; Bernlöhr, K.; Chadwick, P. M.; Chounet, L. -M.; Degrange, B.; Djannati-Ataï, A.; O'C. Drury, L.; Dubus, G.; Espigat, P.; Feinstein, F.; Gallant, Y. A.; Glicenstein, J. F.; Goret, P.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Holleran, M.; Horns, D.; de Jager, O. C.; Khélifi, B.; Komin, Nu.; Lohse, T.; Marcowith, A.; McComb, T. J. L.; de Naurois, M.; Nolan, S. J.; Orford, K. J.; Panter, M.; Pelletier, G.; Pita, S.; Pühlhofer, G.; Punch, M.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Rob, L.; Rowell, G.; Sahakian, V.; Schwanke, U.; Sol, H.; Steenkamp, R.; Stegmann, C.; Tavernet, J. -P.; Terrier, R.; Tluczykont, M.; Vasileiadis, G.; Vincent, P.; Völk, H. J.; Wagner, S. J.; Ward, M.; Heinz, S.; Kossakowski, R.; Lamanna, G.; Vialle, J. P.; Acero, F.; Chaves, R. C. G.; Renaud, M.; Barres de Almeida, U.; de Oña Wilhelmi, E.; Pedaletti, G.; Anton, G.; Becherini, Y.; Behera, B.; Bochow, A.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Charbonnier, A.; Cheesebrough, A.; Clapson, A. C.; Coignet, G.; Dalton, M.; Davids, I. D.; Deil, C.; Dickinson, H. J.; Domainko, W.; Dubois, F.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Fallon, L.; Fegan, S.; Fiasson, A.; Förster, A.; Füßling, M.; Gabici, S.; Gérard, L.; Gerbig, D.; Glück, B.; Göring, D.; Hauser, D.; Hoffmann, A.; Hofverberg, P.; Hoppe, S.; Jacholkowska, A.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Keogh, D.; Kluźniak, W.; Kneiske, T.; Kosack, K.; Lenain, J. -P.; Marandon, V.; Masbou, J.; Maurin, D.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Ohm, S.; Olive, J. -F.; Ostrowski, M.; Paz Arribas, M.; de Los Reyes, R.; Rieger, F.; Rosier-Lees, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Schöck, F. M.; Schönwald, A.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Skilton, J. L.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; van Eldik, C.; Venter, L.; Vivier, M.; Volpe, F.; Vorobiov, S.; Zdziarski, A. A.; Zech, A.; H. E. S. S. Collaboration
France, Germany, Ireland, Armenia, United Kingdom, Poland, South Africa, Sweden, Namibia, Austria, Czech Republic, Australia, Netherlands
Abstract
Aims: Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published HESS upper limit, thus motivating further in-depth observations of this source.
Methods: Deep observations at VHE energies (above 100 GeV) were carried out with the high energy stereoscopic system (HESS) of Cherenkov Telescopes from 2003 to 2008. More than 100 h of data have been collected and subjected to an improved analysis procedure.
Results: Observations resulted in the detection of VHE γ-rays from SN 1006. The measured γ-ray spectrum is compatible with a power-law, the flux is of the order of 1% of that detected from the Crab Nebula, and is thus consistent with the previously established HESS upper limit. The source exhibits a bipolar morphology, which is strongly correlated with non-thermal X-rays.
Conclusions: Because the thickness of the VHE-shell is compatible with emission from a thin rim, particle acceleration in shock waves is likely to be the origin of the γ-ray signal. The measured flux level can be accounted for by inverse Compton emission, but a mixed scenario that includes leptonic and hadronic components and takes into account the ambient matter density inferred from observations also leads to a satisfactory description of the multi-wavelength spectrum.