Annual Cosmic Ray Spectra from 250 MeV up to 1.6 GeV from 1995 - 2014 Measured with the Electron Proton Helium Instrument onboard SOHO
Gómez-Herrero, R.; Heber, B.; Kühl, P.
Germany, Spain
Abstract
The solar modulation of galactic cosmic rays (GCR) can be studied in detail by examining long-term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) onboard the SOlar and Heliospheric Observatory (SOHO) is well suited for this kind of investigation. Although the design of the instrument is optimised to measure proton and helium isotope spectra up to 50 MeVnucleon−1, the capability exists to determine proton energy spectra from 250 MeV up to above 1.6 GeV. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy-response function of EPHIN for electrons, protons, and heavier ions. For validation purposes, proton spectra based on this method are compared to various balloon missions and space instrumentation. As a result we present annual galactic cosmic-ray spectra from 1995 to 2014.