A real-time, high-accuracy, hardware-based integrated parameter estimator for deep space navigation and planetary radio science experiments

Liu, Wei; Wang, Zhen; Jian, Nianchuan; Zhang, Tianyi; Meng, Qiao; Ping, Jinsong; Chen, Congyan; Yao, Shunyu; Yu, Quantao; Wang, Mingyuan; Li, Wenxiao; Zhou, Chenye

China

Abstract

Real-time, high-accuracy frequency-phase estimation is the critical mission of Doppler tracking, which is a primary technique for deep space spacecraft navigation and planetary radio science experiments. Usually, the analog intermediate frequency signal is digitalized and converted to baseband by signal processing hardware platforms called digital back-ends (DBEs) and parameter estimation is performed by extra high performance computers. In this paper, a novel real-time, high-accuracy parameter estimator called a hardware-based integrated parameter estimator (HIPE) is proposed and implemented inside DBEs. An adaptive frequency tracker is proposed to make the initial signal detection, frequency tracking, and data reduction. Then a parameter estimation is sequentially obtained by a modified dechirp technique and a high-resolution spectral analysis technique called spec-zooming. Further, a folding architecture is designed to save hardware resources when realizing spec-zooming in a field programmable gate array (FPGA). An example design is deployed on a DBE with Xilinx Virtex-6 FPGA and an ARM processor. The performance is verified by X-band observations of Mars Express (MEX) and New Horizons (NH). Under an integration time of 1 s, HIPE only takes 2.2 ms to process single-channel baseband data and provides frequency accuracies of 7 mHz and 30 mHz for the tested MEX and NH data. HIPE is implemented inside DBE, so the extra computer is no longer required and the pressure of data transmission or storage is greatly relieved. It could easily be extended to parallel multi-channel, real-time processing and would be a powerful method for Doppler measurement in deep space exploration missions, such as the Chinese mission to Mars to be undertaken by 2020.

2019 Measurement Science and Technology
MEx 6