Evolution of the Frequency of Luminous (>=L*V) Close Galaxy Pairs at z < 1.2 in the COSMOS Field

Sanders, D. B.; Kartaltepe, J. S.; Murayama, T.; Taniguchi, Y.; Salvato, M.; Capak, P.; Calzetti, D.; Scoville, N. Z.; Koekemoer, A.; Mobasher, B.; Sasaki, S. S.

United States, Japan

Abstract

We measure the fraction of luminous galaxies in pairs at projected separations of 5-20 kpc out to z=1.2 in the Cosmic Evolution Survey (COSMOS) field using ACS images and photometric redshifts derived from an extensive multiwavelength data set. Analysis of a complete sample of 106,188 galaxies more luminous than MV=-19.8 (~L*V) in the redshift range 0.1<z<1.2 yields 1749 galaxy pairs. These data are supplemented by a local (z=0-0.1) value for the galaxy pair fraction derived from the Sloan Digital Sky Survey. After statistically correcting the COSMOS pair sample for chance line-of-sight superpositions, the evolution in the pair fraction is fit by a power law ~(1+z)n=3.1+/-0.1. If this strongly evolving pair fraction continues out to higher redshift, ~50% of all luminous galaxies at z~2 are in close pairs. This clearly signifies that galaxy mergers are a very significant and possibly dominant mechanism for galaxy evolution during the epoch of galaxy formation at z=1-3.

Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA, Inc., under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii.

2007 The Astrophysical Journal Supplement Series
eHST 166