TOI-132 b: A short-period planet in the Neptune desert transiting a V = 11.3 G-type star★
Vanderburg, Andrew; Latham, David W.; Law, Nicholas M.; Wilson, Paul A.; Stassun, Keivan G.; Tan, Thiam-Guan; García, Rafael A.; Ziegler, Carl; Collins, Karen A.; Vanderspek, Roland; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Tokovinin, Andrei; Collins, Kevin I.; Mireles, Ismael; Livingston, John H.; Gandolfi, Davide; Hatzes, Artie P.; Narita, Norio; Persson, Carina M.; Van Eylen, Vincent; Jenkins, James S.; Mann, Andrew W.; Mathur, Savita; Johnson, Marshall C.; Jensen, Eric L. N.; Esposito, Massimiliano; Lam, Kristine W. F.; Fausnaugh, Michael; Gan, Tianjun; Briceño, Cesar; Csizmadia, Szilárd; Lopez, Eric D.; Murgas, Felipe; Ricker, George; Rinehart, Stephen; Díaz, Matías R.; Rose, Mark E.; Smith, Jeffrey C.; Yahalomi, Daniel A.; Glidden, Ana; Pallé, Enric; Morris, Robert; Santerne, Alexandre; González-Cuesta, Lucía; Cortés-Zuleta, Pía; Soto, Maritza G.; Vines, José I.; Berdiñas, Zaira M.; Fridlund, Malcom; Georgieva, Iska
Chile, Italy, United States, United Kingdom, Canada, Sweden, Netherlands, Spain, France, Germany, Japan, China, Australia
Abstract
The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38 $^{+0.84}_{-0.85}$ m s-1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40 $^{+1.90}_{-1.92}$ M⊕. Modelling the TESS light curve returns a planet radius of 3.42 $^{+0.13}_{-0.14}$ R⊕, and therefore the planet bulk density is found to be 3.08 $^{+0.44}_{-0.46}$ g cm-3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3 $^{+1.2}_{-2.3}$ per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.