Dust temperature maps of the Galactic plane: The Herschel spectral energy distribution fitting with Cloudy predictions

Huang, Maohai; Zhu, Jiali

China

Abstract

Context. Dust grains absorb the interstellar far ultra-violet and visible photons and re-emit them in far-infrared (FIR) wavebands. The dust FIR continuum can be predicted by a grid of models using various values of the interstellar radiation field.
Aims: We analyze the dust continuum emission in two Hi-GAL science-demonstration phase (SDP) fields using both the radiative transfer code, Cloudy, and the DustEM dust model, to explore the effect of radiative transfer on dust temperature. The 500 μm sub-millimeter excess emission and the very small grain (VSG) contribution to the 70 μm intensity are investigated by spectral energy distribution (SED) fitting using the Cloudy model.
Methods: By comparing the observation with the model prediction, we derive dust temperature maps of the two SDP fields by fitting the dust SED with 4-band data (SPIRE bands plus PACS 160 μm) using both Cloudy and DustEM models. Considering radiative transfer and grain physics simultaneously, we investigate the existence of a 500 μm excess and estimate the VSG contribution to the 70 μm intensity by fitting the dust SED with 3-band data (160, 250, and 350 μm) and 5-band data (SPIRE and PACS bands), respectively.
Results: We confirm that the field with star formation activities have a higher temperature (18.7 ± 0.9 K) than the quiescent region (15.2 ± 0.6 K). We find that the radiative transfer affects the FIR SED of the SDP fields and results in a higher temperature distribution than the dust-only model fit. There is no significant detection of a 500 μm excess in the two SDP fields. The relative contribution from the VSGs to the 70 μm intensity can be up to 50%.

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Reduced Herschel maps (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A111

2014 Astronomy and Astrophysics
Herschel 8