The Earliest Phases of Star formation (EPoS). Temperature, density, and kinematic structure of the star-forming core CB 17
Henning, Th.; Krause, O.; Beuther, H.; Bourke, T. L.; Stutz, A. M.; Nielbock, M.; Launhardt, R.; Linz, H.; Schmiedeke, A.; Schmalzl, M.
Netherlands, Germany, United States
Abstract
Context. The initial conditions for the gravitational collapse of molecular cloud cores and the subsequent birth of stars are still not well constrained. The characteristic cold temperatures (~10 K) in such regions require observations at sub-millimetre and longer wavelengths. The Herschel Space Observatory and complementary ground-based observations presented in this paper have the unprecedented potential to reveal the structure and kinematics of a prototypical core region at the onset of stellar birth.
Aims: This paper aims to determine the density, temperature, and velocity structure of the star-forming Bok globule CB 17. This isolated region is known to host (at least) two sources at different evolutionary stages: a dense core, SMM1, and a Class I protostar, IRS.
Methods: We modeled the cold dust emission maps from 100 μm to 1.2 mm with both a modified blackbody technique to determine the optical depth-weighted line-of-sight temperature and column density and a ray-tracing technique to determine the core temperature and volume density structure. Furthermore, we analysed the kinematics of CB17 using the high-density gas tracer N2H+.
Results: From the ray-tracing analysis, we find a temperature in the centre of SMM1 of T0 = 10.6 K, a flat density profile with radius 9.5 × 103 au, and a central volume density of nH,0 = 2.3 × 105 cm-3. The velocity structure of the N2H+ observations reveal global rotation with a velocity gradient of 4.3 km s-1 pc-1. Superposed on this rotation signature we find a more complex velocity field, which may be indicative of differential motions within the dense core.
Conclusions: SMM is a core in an early evolutionary stage at the verge of being bound, but the question of whether it is a starless or a protostellar core remains unanswered.