Impacts of dark energy on weighing neutrinos: Mass hierarchies considered
Zhang, Xin; Wang, Sai; Wang, Yi-Fan; Xia, Dong-Mei
Hong Kong SAR, China
Abstract
Taking into account the mass splittings between three active neutrinos, we investigate the impacts of dark energy on constraining the total neutrino mass ∑mν by using recent cosmological observations. We consider two typical dark energy models, namely, the w CDM model and the holographic dark energy (HDE) model, which both have an additional free parameter compared with the Λ CDM model. We employ the Planck 2015 data of CMB temperature and polarization anisotropies, combined with low-redshift measurements on BAO distance scales, type Ia supernovae, the Hubble constant, and Planck lensing. Compared to the Λ CDM model, our study shows that the upper limit on ∑mν becomes much looser in the w CDM model but much tighter in the HDE model. In the HDE model, we obtain the 95% confidence level upper limit ∑mν<0.105 eV for three degenerate neutrinos. This might be the most stringent constraint on ∑mν by far, and it is on the verge of diagnosing the neutrino mass hierarchies in the HDE model. However, the difference of χ2 is still not significant enough to distinguish the neutrino mass hierarchies, even though the minimal χ2 of the normal hierarchy is slightly smaller than that of the inverted hierarchy.