Shot Model Parameters for Cygnus X-1 through Phase Portrait Fitting

Swank, J. H.; Szymkowiak, A. E.; Lochner, James C.

United States

Abstract

Shot models for systems having about 1/f power density spectrum are developed by utilizing a distribution of shot durations. Parameters of the distribution are determined by fitting the power spectrum either with analytic forms for the spectrum of a shot model with a given shot profile, or with the spectrum derived from numerical realizations of trial shot models. The shot fraction is specified by fitting the phase portrait, which is a plot of intensity at a given time versus intensity at a delayed time and in principle is sensitive to different shot profiles. These techniques have been extensively applied to the X-ray variability of Cygnus X-1, using HEAO 1 A-2 and an Exosat ME observation. The power spectra suggest models having characteristic shot durations lasting from milliseconds to a few seconds, while the phase portrait fits give shot fractions of about 50 percent. Best fits to the portraits are obtained if the amplitude of the shot is a power-law function of the duration of the shot. These fits prefer shots having a symmetric exponential rise and decay. Results are interpreted in terms of a distribution of magnetic flares in the accretion disk.

1991 The Astrophysical Journal
Exosat 68