Stellar cycles from photometric data: CoRoT stars
Catelan, M.; Ferreira Lopes, C. E.; De Medeiros, J. R.; Leão, I. C.; Canto Martins, B. L.; de Freitas, D. B.
Brazil, Chile
Abstract
Context. Until a few years ago, the amplitude variation in the photometric data had been explored to a limited extent mainly because of time resolution and photometric sensitivity limitations. This investigation is now possible thanks to the Kepler and CoRoT databases which provide a unique set of data for studying the nature of stellar variability cycles.
Aims: The present study characterizes the amplitude variation in a sample of main-sequence stars with light curves collected using CoRoT exofield CCDs.
Methods: We analyze potential stellar activity cycles by studying the variability amplitude over small boxes. The cycle periods and amplitudes were computed based on the Lomb-Scargle periodogram, harmonic fits, and visual inspection. As a first application of our approach, we considered the photometric data for 16 CoRoT FGK main sequence stars, revisited during the IRa01, LRa01 and LRa06 CoRoT runs.
Results: The 16 CoRoT stars appear to follow the empirical relations between activity cycle periods (Pcyc) and the rotation period (Prot) found by previous works. In addition to the so-called A (active) and I (inactive) sequences previously identified, there is a possible third sequence, here named S (short-cycles) sequence. However, recovery fractions estimated from simulations suggest that only a half of our sample has confident cycle measurements. Therefore, more study is needed to verify our results, and Kepler data will clearly be useful for such a study. Overall, our procedure provides a key tool for exploring the CoRoT and Kepler databases to identify and characterize stellar cycle variability.