An Empirical Study of the Electron Temperature and Heavy Ion Velocities in the South Polar Coronal Hole

Gloeckler, George; Geiss, Johannes; Fisk, Lennard A.; Ko, Yuan-Kuen; Guhathakurta, Madhulika

United States, Switzerland

Abstract

The solar wind ions flowing outward through the solar corona generally have their ionic fractions `freeze-in' within 5 solar radii. The altitude where the freeze-in occurs depends on the competition between two time scales: the time over which the wind flows through a density scale height, and the time over which the ions achieve ionization equilibrium. Therefore, electron temperature, electron density, and the velocity of the ions are the three main physical quantities which determine the freeze-in process, and thus the solar wind ionic charge states. These physical quantities are determined by the heating and acceleration of the solar wind, as well as the geometry of the expansion. In this work, we present a parametric study of the electron temperature profile and velocities of the heavy ions in the inner solar corona. We use the ionic charge composition data observed by the SWICS experiment on Ulysses during the south polar pass to derive empirically the electron temperature profile in the south polar coronal hole. We find that the electron temperature profile in the solar inner corona is well constrained by the solar wind charge composition data. The data also indicate that the electron temperature profile must have a maximum within 2 solar radii. We also find that the velocities of heavy ions in their freeze-in regions are small (<100 km s-1) and different elements must flow at different velocities in the inner corona.

1997 Solar Physics
Ulysses 174