The Splash without a Merger
Debattista, Victor P.; Amarante, João A. S.; Beraldo e Silva, Leandro; Smith, Martin C.
China, United Kingdom
Abstract
The Milky Way's progenitor experienced several merger events that left their imprints on the stellar halo, including the Gaia-Sausage/Enceladus. Recently, it has been proposed that this event perturbed the proto-disk and gave rise to a metal-rich ([Fe/H] > -1), low angular momentum (Vφ < 100 km s-1) stellar population. These stars have dynamical and chemical properties different from the accreted stellar halo, but are continuous with the canonical thick disk. In this Letter, we use a hydrodynamical simulation of an isolated galaxy that develops clumps that produce a bimodal thin+thick disk chemistry to explore whether it forms such a population. We demonstrate that clump scattering forms a metal-rich, low angular momentum population, without the need for a major merger. We show that, in the simulation, these stars have chemistry, kinematics, and density distribution in good agreement with those in the Milky Way.