Properties of high-degree oscillation modes of the Sun observed with Hinode/SOT

Kosovichev, A. G.; Mitra-Kraev, U.; Sekii, T.

United Kingdom, United States, Japan

Abstract

Aims:With the Solar Optical Telescope on Hinode, we investigate the basic properties of high-degree solar oscillations observed at two levels in the solar atmosphere, in the G-band (formed in the photosphere) and in the Ca II H line (chromospheric emission).
Methods: We analyzed the data by calculating the individual power spectra as well as the cross-spectral properties, i.e., coherence and phase shift. The observational properties are compared with a simple theoretical model, which includes the effects of correlated noise.
Results: The results reveal significant frequency shifts between the Ca II H and G-band spectra, in particular above the acoustic cut-off frequency for pseudo-modes. The cross-spectrum phase shows peaks associated with the acoustic oscillation (p-mode) lines, and begins to increase with frequency around the acoustic cut-off. However, we find no phase shift for the (surface gravity wave) f-mode. The observed properties for the p-modes are qualitatively reproduced in a simple model with a correlated background if the correlated noise level in the Ca II H data is higher than in the G-band data. These results suggest that multi-wavelength observations of solar oscillations, in combination with the traditional intensity-velocity observations, may help to determine the level of the correlated background noise and to determine the type of wave excitation sources on the Sun.

2008 Astronomy and Astrophysics
Hinode 25