Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

Aschwanden, Markus J.; Reardon, Kevin; Jess, Dave B.

United States, Italy, United Kingdom

Abstract

The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (≈ 0\buildrel{\prime\prime}\over{.} 2{--}0\buildrel{\prime\prime}\over{.} 3), from the Interferometric Bidimensional Spectrometer in the Ca II 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563 Å line, the Interface Region Imaging Spectrograph in the 2796 Å line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and in chromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures are field-aligned with the best-fit solution by a median misalignment angle of {μ }2≈ 4^\circ -7° (3) the free energy computed from coronal data may underestimate that obtained from cromospheric data by a factor of ≈ 2-4, (4) the height range of chromospheric features is confined to h≲ 4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ {10}-5{--}{10}-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

2016 The Astrophysical Journal
IRIS 26