Coronal properties of the luminous radio-quiet quasar QSO B2202-209
Harrison, F. A.; Stern, D.; Behar, E.; Elvis, M.; Matt, G.; Celotti, A.; Walton, D. J.; Graham, M.; Kammoun, E. S.; Risaliti, G.; Jun, H. D.
Italy, United States
Abstract
We present an analysis of the joint XMM-Newton and NuSTAR observations of the radio-quiet quasar QSO B2202-209. Using an optical observation from the Hale Telescope at the Palomar Observatory, we revise the redshift of the source from the previously reported z = 1.77 to z = 0.532, and we estimate the mass of the central black hole, log (MBH/M⊙) = 9.08 ± 0.18. The X-ray spectrum of this source can be well described by a power law of photon index Γ = 1.82 ± 0.05 with E_cut = 152_{-54}^{+103} keV, in the rest frame of the source. Assuming a Comptonization model, we estimate the coronal temperature to be kTe = 42 ± 3 keV and kTe = 56 ± 3 keV for a spherical and a slab geometry, respectively. The coronal properties are comparable to the ones derived for local active galactic nuclei, despite a difference of around one order of magnitude in black hole mass and X-ray luminosity (L2 - 10 = 1.93 × 1045 erg s-1). The quasar is X-ray loud, with an unusually flat observed optical-to-X-ray spectral slope αOX = 1.00 ± 0.02, and has an exceptionally strong optical [O III] line. Assuming that both the X-ray emission and the [O III] line are isotropic, these two extreme properties can be explained by a nearly edge-on disc, leading to a reduction in the observed ultraviolet continuum light.