Water isotopologues in the circumstellar envelopes of M-type AGB stars
Olofsson, H.; Decin, L.; Lombaert, R.; Maercker, M.; Karakas, A.; Danilovich, T.
Belgium, Sweden, Australia
Abstract
Aims: In this study we intend to examine rotational emission lines of two isotopologues of water: H217O and H218O. By determining the abundances of these molecules, we aim to use the derived isotopologue - and hence oxygen isotope - ratios to put constraints on the masses of a sample of M-type AGB stars that have not been classified as OH/IR stars.
Methods: We have used detailed radiative transfer analysis based on the accelerated lambda iteration method to model the circumstellar molecular line emission of H217O and H218O for IK Tau, R Dor, W Hya, and R Cas. The emission lines used to constrain our models came from Herschel/HIFI and Herschel/PACS observations and are all optically thick, meaning that full radiative transfer analysis is the only viable method of estimating molecular abundance ratios.
Results: We find generally low values of the 17O/18O ratio for our sample, ranging from 0.15 to 0.69. This correlates with relatively low initial masses, in the range 1.0 to 1.5 M⊙ for each source, based on stellar evolutionary models. We also find ortho-to-para ratios close to 3, which are expected from warm formation predictions.
Conclusions: The 17O/18O ratios found for this sample are at the lower end of the range predicted by stellar evolutionary models, indicating that the sample chosen had relatively low initial masses.