Unveiling the nature of bright z ≃ 7 galaxies with the Hubble Space Telescope

Bowler, R. A. A.; McLure, R. J.; Dunlop, J. S.; McLeod, D. J.

United Kingdom

Abstract

We present new Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) imaging of 25 extremely luminous (-23.2 ≤ MUV ≲ -21.2) Lyman-break galaxies (LBGs) at z ≃ 7. The sample was initially selected from 1.65 deg2 of ground-based imaging in the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman α emitters, 'Himiko' and 'CR7'. A deconfusion analysis of the deep Spitzer photometry available suggests that these galaxies exhibit strong rest-frame optical nebular emission lines (EW0(Hβ + [O III]) > 600 Å). We find that irregular, multiple-component morphologies suggestive of clumpy or merging systems are common (fmulti > 0.4) in bright z ≃ 7 galaxies, and ubiquitous at the very bright end (MUV < -22.5). The galaxies have half-light radii in the range r1/2 ∼ 0.5-3 kpc. The size measurements provide the first determination of the size-luminosity relation at z ≃ 7 that extends to MUV ∼ -23. We find the relation to be steep with r1/2 ∝ L1/2. Excluding clumpy, multicomponent galaxies however, we find a shallower relation that implies an increased star formation rate surface density in bright LBGs. Using the new, independent, HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ≃ 7 favours a power-law decline at the bright end, compared to an exponential Schechter function drop-off. Finally, these results have important implications for the Euclid mission, which we predict will detect >1000 similarly bright galaxies at z ≃ 7. Our new HST imaging suggests that the vast majority of these galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf star contamination.

2017 Monthly Notices of the Royal Astronomical Society
eHST 155