Cosmic Origins Spectrograph Observations of Warm Intervening Gas at z ~ 0.325 toward 3C 263

Savage, Blair D.; Wakker, Bart P.; Narayanan, Anand

India, United States

Abstract

We present HST/COS high-S/N observations of the z = 0.32566 multiphase absorber toward 3C 263. The Cosmic Origins Spectrograph (COS) data show absorption from H I (Lyα to Lyθ), O VI, C III, N III, Si III, and C II. The Ne VIII in this absorber is detected in the FUSE spectrum along with O III, O IV, and N IV. The low and intermediate ions are kinematically aligned with each other and H I and display narrow line widths of b ~ 6-8 km s-1. The O VI λλ1031, 1037 lines are kinematically offset by Δv ~ 12 km s-1 from the low ions and are a factor of ~4 broader. All metal ions except O VI and Ne VIII are consistent with an origin in gas photoionized by the extragalactic background radiation. The bulk of the observed H I is also traced by this photoionized medium. The metallicity in this gas phase is Z >~ 0.15 Z with carbon having near-solar abundances. The O VI and Ne VIII favor an origin in collisionally ionized gas at T = 5.2 × 105 K. The H I absorption associated with this warm absorber is a broad-Lyα absorber (BLA) marginally detected in the COS spectrum. This warm gas phase has a metallicity of [X/H] ~-0.12 dex, and a total hydrogen column density of N( H) ~ 3 × 1019 cm-2, which is ~2 dex higher than what is traced by the photoionized gas. Simultaneous detection of O VI, Ne VIII, and BLAs in an absorber can be a strong diagnostic of gas with T ~ 105-106 K corresponding to the warm phase of the warm-hot intergalactic medium or shock-heated gas in the extended halos of galaxies.

Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555, and the NASA-CNES/ESA Far Ultraviolet Spectroscopic Explorer mission, operated by the Johns Hopkins University, supported by NASA contract NAS 05-32985.

2012 The Astrophysical Journal
eHST 27