The radio-ultraviolet spectral energy distribution of the jet in 3C 273
Meisenheimer, K.; Jester, S.; Röser, H. -J.; Perley, R.
Germany, United States
Abstract
We present deep VLA and HST observations of the large-scale jet in 3C 273 matched to 0.3 arcsec resolution. The observed spectra show a significant flattening in the infrared-ultraviolet wavelength range. The jet's emission cannot therefore be assumed to arise from a single electron population and requires the presence of an additional emission component. The observed smooth variations of the spectral indices along the jet imply that the physical conditions vary correspondingly smoothly. We determine the maximum particle energy for the optical jet using synchrotron spectral fits. The slow decline of the maximum energy along the jet implies particle reacceleration acting along the entire jet. In addition to the already established global anti-correlation between maximum particle energy and surface brightness, we find a weak positive correlation between small-scale variations in maximum particle energy and surface brightness. The origin of these conflicting global and local correlations is unclear, but they provide tight constraints for reacceleration models.
Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. These observations are associated with proposals #5980 and #7848. Also based on observations obtained at the NRAO's VLA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.