Eruptions from coronal bright points: A spectroscopic view by IRIS of a mini-filament eruption, QSL reconnection, and reconnection-driven outflows
Madjarska, Maria S.; Wiegelmann, Thomas; Mackay, Duncan H.; Galsgaard, Klaus; Xie, Haixia
Germany, United Kingdom, China
Abstract
Context. Our study investigates a mini-filament eruption associated with cancelling magnetic fluxes. The eruption originates from a small-scale loop complex commonly known as a coronal bright point (CBP). The event is uniquely recorded in both the imaging and spectroscopic data taken with the Interface Region Imaging Spectrograph (IRIS).
Aims: The investigation aims to gain a better understanding of the physical processes driving these ubiquitous small-scale eruptions.
Methods: We analysed IRIS spectroscopic and slit-jaw imaging observations as well as images taken in the extreme-ultraviolet channels of the Atmospheric Imaging Assembly (AIA) and line-of-sight magnetic-field data from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory. As the observations can only indicate the possible physical processes at play, we also employed a non-linear force-free field (NLFFF) relaxation approach based on the HMI magnetogram time series. This allowed us to further investigate the evolution of the magnetic-field structures involved in the eruption process.
Results: We identified a strong small-scale brightening as a micro-flare in a CBP, recorded in emission from chromospheric to flaring plasmas. The mini-eruption is manifested via the ejection of hot (CBP loops) and cool (mini-filament) plasma recorded in both the imaging and spectroscopic data. The micro-flare is preceded by the appearance of an elongated bright feature in the IRIS slit-jaw 1400 Å images, located above the polarity inversion line. The micro-flare starts with an IRIS pixel size brightening and propagates bi-directionally along the elongated feature. We detected, in both the spectral and imaging IRIS data and AIA data, strong flows along and at the edges of the elongated feature; we believe that these represent reconnection outflows. Both edges of the elongated feature that wrap around the edges of the erupting MF evolve into a J-type shape, creating a sigmoid appearance. A quasi-separatrix layer (QSL) is identified in the vicinity of the polarity inversion line by computing the squashing factor, Q, in different horizontal planes of the NLFFF model.
Conclusions: This CBP spectro-imaging study provides further evidence that CBPs represent downscaled active regions and, as such, they may make a significant contribution to the mass and energy balance of the solar atmosphere. They are the sources of all range of typical active-region features, including magnetic reconnection along QSLs, (mini-)filament eruptions, (micro-)flaring, reconnection outflows, etc. The QSL reconnection site has the same spectral appearance as the so-called explosive events identified by strong blue- and red-shifted emission, thus providing an answer to an outstanding question regarding the true nature of this spectral phenomenon.