Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
Russell, C. T.; Lavraud, B.; Anderson, B. J.; Chust, T.; Le Contel, O.; Nakamura, R.; Fuselier, S. A.; Khotyaintsev, Yu. V.; Torbert, R. B.; Retinò, A.; Magnes, W.; Canu, P.; Plaschke, F.; Strangeway, R. J.; Burch, J. L.; Giles, B. L.; Richard, L.; Saito, Y.; Gershman, D. J.; Alexandrova, A.; Mirioni, L.; Wilder, F. D.; Ergun, R. E.; Ahmadi, N.; Bromund, K. R.; Wei, H.; Alqeeq, S. W.; Aït-Si-Ahmed, Y.; Chuvatin, A.; Baraka, S. M.; Lindqvist, P. A.
France, Sweden, United States, Austria, Japan
Abstract
We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (