A Case for a Small to Negligible Influence of Dust Charging on the Ionization Balance in the Coma of Comet 67P
Rubin, M.; Vigren, E.; Eriksson, A. I.; Johansson, F. L.; Morooka, M.; Marschall, R.
Sweden, United States, Switzerland
Abstract
A recent work aided by Rosetta in situ measurements set constraints on the dust-to-gas mass emission ratio and the size distribution of dust escaping the nucleus of comet 67P/Churyumov-Gerasimenko near perihelion. Here we use this information along with other observables/parameters as input into an analytical model aimed at estimating the number density of electrons attached to dust particles near the position of Rosetta. These theoretical estimates are compared to in situ measurements of the degree of ionization. The comparison proposes that Rosetta, while near perihelion, was typically not in electron-depleted regions of the inner coma of 67P. Our work suggests a typical level of electron depletion probably below 10% and possibly below 1%. In line with previous studies, we find, again with certain assumptions and other observables/parameters as input, that the observed negative spacecraft charging to a few tens of volts does not significantly impact the detection of charged dust grains, with a possible exception for grains with radii less than ~10 nm.