Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252

Iwasawa, K.; Fabian, A. C.; Gandhi, P.; Hlavacek-Larrondo, J.; Russell, H. R.; Edge, A. C.; Hogan, M. T.; Gendron-Marsolais, M. -L.; Mezcua, M.

Canada, United Kingdom, Spain

Abstract

Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ∼ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (∼2 keV) and bolometric X-ray luminosity (∼3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.

2017 Monthly Notices of the Royal Astronomical Society
eHST 9