The Magnetic Field Structure of Coronal Mass Ejections: A More Realistic Representation
Lugaz, Noé; Al-Haddad, Nada
United States
Abstract
It is often accepted that the magnetic field structure of coronal mass ejections (CMEs) is accurately represented by the highly twisted circular cross-section magnetic flux rope model, which is the basis of all most commonly used sketches and representations of CMEs. This paradigm has been developed based on studies in the 1970s and 1980s, and it was the inspiration for a series of fitting models developed in the 1990s and 2000s to provide 3-D visualizations and representations for data obtained by remote sensing and in situ measurements. There has been a wealth of measurements since this paradigm was first developed, in particular numerous multi-point measurements and remote heliospheric observations of CMEs in addition to more physical models and numerical simulations. Taken together, they have demonstrated that such a paradigm, although it provides an explanation for certain CME signatures, is inadequate to represent the complexity of the magnetic field structure in numerous other cases. This manuscript reviews 40 years of continuous observations and ongoing research efforts since the proposal of the highly twisted circular cross-section flux rope model, and presents a more elaborate and realistic representation that better reflects the true complexity of the magnetic ejecta within CMEs.