Density perturbations for running vacuum: a successful approach to structure formation and to the σ8-tension
Gómez-Valent, Adrià; Solà Peracaula, Joan
Spain
Abstract
Recent studies suggest that dynamical dark energy (DDE) provides a better fit to the rising affluence of modern cosmological observations than the concordance model (ΛCDM) with a rigid cosmological constant, Λ. Such is the case with the running vacuum models (RVMs) and to some extent also with a simple XCDM parametrization. Apart from the cosmic microwave background (CMB) anisotropies, the most crucial data sets potentially carrying the DDE signature are: (i) baryon acoustic oscillations (BAO), and (ii) direct large-scale structure (LSS) formation data (i.e. the observations on f(z)σ8(z) at different redshifts). As it turns out, analyses mainly focusing on CMB and with insufficient BAO+LSS input, or those just making use of gravitational weak-lensing data for the description of structure formation, generally fail to capture the DDE signature, whereas the few existing studies using a rich set of CMB+BAO+LSS data do converge to the remarkable conclusion that DDE might well be encoded in the current cosmological observations. Being the issue so pressing, here we explain both analytically and numerically the origin of the possible hints of DDE in the context of RVMs, which arise at a significance level of 3σ-4σ. By performing a detailed study on the matter and vacuum perturbations within the RVMs, and comparing with the XCDM, we show why the running vacuum fully relaxes the existing σ8-tension and accounts for the LSS formation data much better than the concordance model.