The origin of UV-optical variability in AGN and test of disc models: XMM-Newton and ground-based observations of NGC 4395
Gandhi, P.; Netzer, H.; Peterson, B. M.; Emmanoulopoulos, D.; Lira, P.; Bieryla, A.; McCully, C.; Kaspi, S.; McHardy, I. M.; Uemura, M.; Latham, D.; Falco, E.; Chand, H.; Connolly, S. D.; Elvis, M. S.
United Kingdom, United States, India, Israel, Chile, Japan
Abstract
The origin of short timescale (weeks/months) variability of AGN, whether due to intrinsic disc variations or reprocessing of X-ray emission by a surrounding accretion disc, has been a puzzle for many years. However recently a number of observational programmes, particularly of NGC 5548 with Swift, have shown that the UV/optical variations lag behind the X-ray variations in a manner strongly supportive of X-ray reprocessing. Somewhat surprisingly, the implied size of the accretion disc is ∼3 times greater than expected from a standard, smooth, Shakura-Sunyaev thin disc model. Although the difference may be explained by a clumpy accretion disc, it is not clear whether the difference will occur in all AGN or whether it may change as, eg, a function of black hole mass, accretion rate, or disc temperature. Measurements of interband lags for most AGN require long timescale monitoring, which is hard to arrange. However for low mass (< 106 M⊙) AGN, the combination of XMM-Newton EPIC (X-rays) with the optical monitor in fast readout mode allows an X-ray/UV-optical lag to be measured within a single long observation. Here we summarise previous related observations and report on XMM-Newton observations of NGC 4395 (mass 100 times lower, accretion rate ∼20 times lower than for NGC 5548). We find that the UVW1 lags the X-rays by ∼ 470 s. Simultaneous observations at 6 different ground based observatories also allowed the g-band lag (∼ 800s) to be measured. These observations are in agreement with X-ray reprocessing but initial analysis suggests that, for NGC 4395, they do not differ markedly from the predictions of the standard thin disc model.