AEGIS: A Multiwavelength Study of Spitzer Power-law Galaxies
Barmby, P.; Ivison, R. J.; Georgakakis, A.; Nandra, K.; Fazio, G. G.; Ashby, M. L. N.; Willner, S. P.; Rosario, D. J.; Konidaris, N. P.; Park, S. Q.; Miyazaki, S.
United States, Canada, Greece, United Kingdom, Japan
Abstract
This paper analyzes a sample of 489 Spitzer/Infrared Array Camera (IRAC) sources in the Extended Groth Strip (EGS), whose spectral energy distributions fit a red power law (PL) from 3.6 to 8.0 μm. The median redshift for sources with known redshifts is langzrang = 1.6. Though all or nearly all of the sample galaxies are likely to be active galactic nuclei (AGNs), only 33% were detected in the EGS X-ray survey (AEGIS-X) using 200 ks Chandra observations. The detected sources are X-ray luminous with L X>1043 erg s-1 and moderately to heavily obscured with N H>1022 cm-2. Stacking the X-ray-undetected sample members yields a statistically significant X-ray signal, suggesting that they are on average more distant or more obscured than sources with X-ray detections. The ratio of X-ray to mid-infrared fluxes suggests that a substantial fraction of the sources undetected in X-rays are obscured at the Compton-thick level, in contrast to the X-ray-detected sources, all of which appear to be Compton thin. For the X-ray-detected PL sources with redshifts, an X-ray luminosity L X ~ 1044 erg s-1 marks a transition between low-luminosity, blue sources dominated by the host galaxy to high-luminosity, red PL sources dominated by nuclear activity. X-ray-to-optical ratios, infrared variability, and 24 μm properties of the sample are consistent with the identification of infrared PL sources as active nuclei, but a rough estimate is that only 22% of AGNs are selected by the PL criteria. Comparison of the PL selection technique and various IRAC color criteria for identifying AGNs confirms that high-redshift samples selected via simple IRAC colors may be heavily contaminated by starlight-dominated objects.