The refractory-to-ice ratio in comet 67P: Implications on the composition of the comet-forming region of the protoplanetary disk
Morbidelli, Alessandro; Marschall, Raphael; Marrocchi, Yves
France
Abstract
Comets, asteroids, and other small bodies are thought to be remnants of the original planetesimal population of the Solar System. As such, their physical, chemical, and isotopic properties hold crucial details on how and where they formed and how they evolved. Yet, placing precise constraints on the formation region of these bodies has been challenging. Data from spacecraft missions have a particularly high potential of addressing the question of the origin of the visited bodies. ESA's Rosetta mission to comet 67P/Churyumov-Gerasimenko returned data from the comet for two years on its journey around the Sun. This extensive data set has revolutionized our view on comets and still holds unsolved problems. Here, we aim to determine comet 67P's bulk elemental composition from Rosetta data, including its refractory-to-ice ratio. We use these results to constrain the temperature in the protoplanetary disk where comets formed and, using a disk model, the formation location. We use the Rosetta/ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) measurement of the volatile/ice composition and the Rosetta/COSIMA (COmetary Secondary Ion Mass Analyzer) measurements of the refractory composition of comet 67P. These measurements are combined using a Monte Carlo method. The refractory-to-ice ratio is a free parameter that is constrained a posteriori. Using only the composition, we constrain the refractory-to-ice ratio to