Large-scale Plasma Vortex in the Magnetotail of Venus

Chai, Lihui; Guo, Mengdan; Tang, Xiaozhun

Abstract

Using the observations by the Analyzer of Space Plasmas and Energetic Atoms on Venus (ASPERA-4) onboard Venus Express, Previous studies found A large-scale plasma vortices of solar wind hydrogen ions (H+) and Venus ionospheric oxygen ions (O+) in the magnetotail of Venus. The vortex is counterclockwise when viewed from the tail towards the planet. We conducted a statistical analysis of the ASPERA-4 moment data calibrated by Fedorov to investigate the plasma characteristics in Venusian magnetotail. The statistical results showed that there are large-scale vortices of the solar wind H+ and Venus ionospheric O+ in both the Venus-Solar-Orbital (VSO) and Venus-Solar-Electrical (VSE) coordinate systems, but there are clockwise. Considering that neither counterclockwise nor clockwise plasma vortices can generate a magnetic field consistent with the observed magnetic structure in the Venusian magnetotail, and no complete plasma vortex is observed in the Mars magnetotail with a magnetic structure similar to that of Venusian magnetotail, concluded that there may not be large-scale plasma vortices in the Venusian magnetotail, and that more satellite observations are needed in the future to investigate the plasma characteristics on Venus.

2024 Chinese Journal of Space Science
VenusExpress 0