Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b

Deming, Drake; Madhusudhan, Nikku; Gandhi, Siddharth; Mandell, Avi M.; Sheppard, Kyle B.; Pinhas, Arazi; Tamburo, Patrick

United States, United Kingdom

Abstract

We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b ({T}{eq}=2411 {{K}}, M=10.3 {M}J) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4 μm. However, we infer emission at 4.5 μm and absorption at 1.6 μm that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity ({{C}}/{{H}}={283}-138+395× solar). The derived composition and T/P profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at > 2σ . Future observations are necessary to confirm the unusual planetary properties implied by these results.

2017 The Astrophysical Journal
eHST 88