A 2+1 + 1 quadruple star system containing the most eccentric, low-mass, short-period, eclipsing binary known

Vanderburg, A.; Zasche, P.; Borkovits, T.; Rappaport, S. A.; Gagliano, R.; Jacobs, T.; LaCourse, D.; Kristiansen, M. H.; Terentev, I. A.; Schwengeler, H. M.; Omohundro, M.; Tofflemire, B. M.; Muirhead, P. S.; Han, E.; Krolikowski, D. M.

United States, Hungary, United Kingdom, Czech Republic, Denmark

Abstract

We present an analysis of a newly discovered 2+1 + 1 quadruple system with TESS containing an unresolved eclipsing binary (EB) as part of TIC 121088960 and a close neighbour TIC 121088959. The EB consists of two very low-mass M dwarfs in a highly eccentric (e = 0.709) short-period (P = 3.043 58 d) orbit. Given the large pixel size of TESS and the small separation (3${_{.}^{\prime\prime}}$9) between TIC 121088959 and TIC 121088960 we used light centroid analysis of the difference image between in-eclipse and out-of-eclipse data to show that the EB likely resides in TIC 121088960, but contributes only ~10 per cent of its light. Radial velocity data were acquired with iSHELL at NASA's Infrared Facility and the Coudé spectrograph at the McDonald 2.7-m telescope. For both images, the measured RVs showed no variation over the 11 d observational baseline, and the RV difference between the two images was 8 ± 0.3 km s-1. The similar distances and proper motions of the two images indicate that TIC 121088959 and TIC 121088960 are a gravitationally bound pair. Gaia's large RUWE and astrometric_excess_noise parameters for TIC 121088960, further indicate that this image is the likely host of the unresolved EB and is itself a triple star. We carried out an SED analysis and calculated stellar masses for the four stars, all of which are in the M dwarf regime: 0.19 M and 0.14 M for the EB stars and 0.43 M and 0.39 M for the brighter visible stars, respectively. Lastly, numerical simulations show that the orbital period of the inner triple is likely the range 1-50 yr.

2022 Monthly Notices of the Royal Astronomical Society
Gaia 1