Sharp Decreases of Solar Metric Radio Storm Emission

Kahler, S.; Aurass, H.; Chertok, I. M.; Gnezdilov, A. A.

Russia, United States, Germany

Abstract

We discuss a little-known variety of sharp decreases of long-duration meter-wavelength noise storms and type IV bursts. A survey of the IZMIRAN and AIP radio observations shows that a decrease or nearly complete disappearance of the continuum and bursts developing over tens of minutes without a subsequent recovery of the radio flux occasionally occurs. The decrease is usually preceded by a short-duration (several tens of minutes) enhancement of the radio emission. In these events, the onset of the flux decrease drifts from high to low frequencies with a rate of −(0.05-0.35) MHz s−1, comparable to the drift rates of noise-storm onsets and of chains of type I bursts. White-light coronagraph observations, as well as the characteristics of the accompanying microwave and soft X-ray emissions, provide evidence that such radio decreases appear to be associated with coronal mass ejections (CMEs) and post-CME phenomena. Yohkoh/SXT images show radio flux decrease events which are accompanied by significant rearrangements of coronal structures. We suggest that the radio flux variations are caused by CME interactions with pre-existing coronal arcade structures which are sources of noise storms and energetic electron acceleration. The fact that the noise-storm decreases develop with delays of several tens of minutes relative to the associated microwave burst peak, when the corresponding CME front is located at heights of several R, however, is not explained.

2001 Solar Physics
SOHO 18