Configuration of the Earth's Magnetotail Current Sheet

Lin, Yu; Zhang, Xiao-Jia; El-Alaoui, Mostafa; Zelenyi, Lev; Runov, Andrei; Angelopoulos, Vassilis; Lu, San; Artemyev, Anton; Vasko, Ivan; Russell, Christopher

United States, Russia

Abstract

The spatial scale and intensity of Earth's magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth's magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.

2021 Geophysical Research Letters
Cluster 18