A connection between accretion state and Fe K absorption in an accreting neutron star: black hole-like soft-state winds?
Ponti, Gabriele; Muñoz-Darias, Teodoro; Fender, Robert P.
Germany, United Kingdom
Abstract
High-resolution X-ray spectra of accreting stellar-mass black holes reveal the presence of accretion disc winds, traced by high-ionization Fe K lines. These winds appear to have an equatorial geometry and to be observed only during disc-dominated states in which the radio jet is absent. Accreting neutron star systems also show equatorial high-ionization absorbers. However, the presence of any correlation with the accretion state has not been previously tested. We have studied EXO 0748-676, a transient neutron star system, for which we can reliably determine the accretion state, in order to investigate the Fe K absorption/accretion state/jet connection. Not one of 20 X-ray spectra obtained in the hard state revealed any significant Fe K absorption line. However, intense Fe XXV and Fe XXVI (as well as a rarely observed Fe XXIII line plus S XVI; a blend of S XVI and Ar XVII; Ca XX and Ca XIX, possibly produced by the same high-ionization material) absorption lines (EW_{Fe {XXIII-XXV}}=31± 3, EW_{Fe {XXVI}}=8± 3 eV) are clearly detected during the only soft-state observation. This suggests that the connection between Fe K absorption and states (and anticorrelation between the presence of Fe K absorption and jets) is also valid for EXO 0748-676 and therefore it is not a unique property of black hole systems but a more general characteristic of accreting sources.