Dynamics of solar mesogranulation
Hanslmeier, A.; Hirzberger, J.; Pötzi, W.; Leitzinger, M.; Brandt, P. N.
Austria, Germany
Abstract
Using a 45.5-h time series of photospheric flow fields generated from a set of high-resolution continuum images (SOHO/MDI) we analyze the dynamics of solar mesogranule features. The series was prepared applying a local correlation tracking algorithm with a 4.8´´ FWHM window. By computing 1-h running means in time steps of 10 min we generate 267 averaged divergence maps that are segmented to obtain binary maps. A tracking algorithm determines lifetimes and barycenter coordinates of regions of positive divergence defined as mesogranules (MGs). If we analyze features of lifetimes ≥1 h and of areas ≥5 Mm{2 we find a mean drift velocity of 304 m s-1 (with ± 1σ variation of 180 m s-1), a mean travel distance of 2.5 ± 1.8 Mm, a mean lifetime of 2.6 ± 1.8 h, and a 1/e decay time of 1.6 h for a total of 2022 MGs. The advective motion of MGs within supergranules is seen for 50 to 70% of the long-lived (≥4 h) MGs while the short-lived ones move irregularly. If only the long-lived MGs are further analyzed the drift velocities reduce to 207 m s-1 and the travel distances increase to 4.1 Mm on average, which is an appreciable fraction of the supergranular radius. The results are largely independent of the divergence segmentation level.