Analysis of periodic orbits in the Saturn-Titan system using the method of Poincare section surfaces

Safiya Beevi, A.; Sharma, R. K.

India

Abstract

We explore the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. The location, nature and size of periodic and quasi-periodic orbits are studied using the numerical technique of Poincare surface of sections. The maximum amplitude of oscillations about the periodic orbits is determined and is used as a parameter to measure the degree of stability in the phase space for such orbits. It is found that the orbits around Saturn remain around it and their stability increases with the increase in the value of Jacobi constant C. The orbits around Titan move towards it with the increase in C. At C=3.1, the pericenter and apocenter are 358.2 and 358.5 km, respectively. No periodic or quasi-periodic orbits could be found by the present method around the collinear Lagrangian point L1 (0.9569373834…).

2011 Astrophysics and Space Science
Cassini 12