Mother of dragons. A massive, quiescent core in the dragon cloud (IRDC G028.37+00.07)

Bigiel, F.; Parker, R. J.; Longmore, S. N.; Caselli, P.; Pineda, J. E.; Jiménez-Serra, I.; Tan, J. C.; Cosentino, G.; Zhang, Q.; Barnes, A. T.; Liu, J.; Fontani, F.; Henshaw, J. D.; Kalb, D. -S.; Law, C. Y.; Sánchez-Monge, A.; Lim, W.; Wang, K.

Germany, United States, Sweden, Italy, United Kingdom, Spain, China

Abstract

Context. Core accretion models of massive star formation require the existence of massive, starless cores within molecular clouds. Yet, only a small number of candidates for such truly massive, monolithic cores are currently known.
Aims: Here we analyse a massive core in the well-studied infrared-dark cloud (IRDC) called the `dragon cloud' (also known as G028.37+00.07 or `Cloud C'). This core (C2c1) sits at the end of a chain of a roughly equally spaced actively star-forming cores near the center of the IRDC.
Methods: We present new high-angular-resolution 1 mm ALMA dust continuum and molecular line observations of the massive core.
Results: The high-angular-resolution observations show that this region fragments into two cores, C2c1a and C2c1b, which retain significant background-subtracted masses of 23 M and 2 M (31 M and 6 M without background subtraction), respectively. The cores do not appear to fragment further on the scales of our highest-angular-resolution images (0.2″, 0.005 pc ~ 1000 AU). We find that these cores are very dense (nH2 > 106 cm−3) and have only trans-sonic non-thermal motions (ℳs ~ 1). Together the mass, density, and internal motions imply a virial parameter of <1, which suggests the cores are gravitationally unstable, unless supported by strong magnetic fields with strengths of ~1-10 mG. From CO line observations, we find that there is tentative evidence for a weak molecular outflow towards the lower-mass core, and yet the more massive core remains devoid of any star formation indicators.
Conclusions: We present evidence for the existence of a massive, pre-stellar core, which has implications for theories of massive star formation. This source warrants follow-up higher-angular-resolution observations to further assess its monolithic and pre-stellar nature.

2023 Astronomy and Astrophysics
Herschel 18