Variation in the Stellar Initial Mass Function from the Chromospheric Activity of M Dwarfs in Early-type Galaxies
van Dokkum, Pieter; Conroy, Charlie
United States
Abstract
Mass measurements and absorption-line studies indicate that the stellar initial mass function (IMF) is bottom-heavy in the central regions of many early-type galaxies, with an excess of low-mass stars compared to the IMF of the Milky Way. Here we test this hypothesis using a method that is independent of previous techniques. Low-mass stars have strong chromospheric activity characterized by nonthermal emission at short wavelengths. Approximately half of the UV flux of M dwarfs is contained in the λ1215.7 Lyα line, and we show that the total Lyα emission of an early-type galaxy is a sensitive probe of the IMF with a factor of ~2 flux variation in response to plausible variations in the number of low-mass stars. We use the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure the Lyα line in the centers of the massive early-type galaxies NGC 1407 and NGC 2695. We detect Lyα emission in both galaxies and demonstrate that it originates in stars. We find that the Lyα to i-band flux ratio is a factor of 2.0 ± 0.4 higher in NGC 1407 than in NGC 2695, in agreement with the difference in their IMFs as previously determined from gravity-sensitive optical absorption lines. Although a larger sample of galaxies is required for definitive answers, these initial results support the hypothesis that the IMF is not universal but varies with environment.