Galactoseismology and the local density of dark matter

Widrow, Lawrence M.; Banik, Nilanjan; Dodelson, Scott

United States, Canada

Abstract

We model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to the mid-plane, comes from three different surveys of stellar kinematics within a few kiloparsecs of the Sun. We show that their existence may lead to systematic errors of 10 per cent or greater in the vertical force Kz(z) at |z| = 1.1 kpc. These errors translate to ≳ 25 per cent errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.

2017 Monthly Notices of the Royal Astronomical Society
Gaia 37