Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357

Stern, D.; Sargent, W. L. W.; Rosati, P.; Humphrey, A.; Villar-Martín, M.; Hook, R. N.; Lombardi, M.; Fosbury, R. A. E.; Stanford, S. A.; Holden, B. P.; Squires, G. K.; Rauch, M.

Germany, United Kingdom, United States

Abstract

The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z=0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R-K color and strong, narrow emission lines. Analysis of HST WFPC2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of ~10 by a complex cluster environment. The high intrinsic luminosity, the emission-line spectrum, the absorption components seen in Lyα and C IV, and the rest-frame ultraviolet continuum are all consistent with a simple H II region model containing ~106 hot O stars. The best-fit parameters for this model imply a very hot ionizing continuum (TBB~=80,000 K), a high ionization parameter (logU~=-1), and a low nebular metallicity (Z/Zsolar~=0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair-instability supernovae, requiring stars more massive than ~140 Msolar.

Based partly on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

2003 The Astrophysical Journal
eHST 116