Testing supersymmetric Higgs inflation with non-Gaussianity
Kawai, Shinsuke; Kim, Jinsu
South Korea
Abstract
We investigate multifield signatures of the nonminimally coupled supersymmetric Higgs inflation-type cosmological scenario, focusing on the two-field Higgs-lepton inflation model as a concrete example. This type of inflationary model is realized in a theory beyond the Standard Model embedded in supergravity with a noncanonical Kähler potential. We employ the backward δ N formalism to compute cosmological observables, including the scalar and tensor power spectra, the spectral indices, the tensor-to-scalar ratio, and the local-type nonlinearity parameter. The trajectory of the inflaton is controlled by the initial conditions of the inflaton as well as by the coefficients in the Kähler potential. We analyze the bispectrum of the primordial fluctuations when the inflaton trajectory deviates from a straight line and obtain constraints on the noncanonical terms of the Kähler potential using the Planck satellite data. Our analysis represents a concrete particle phenomenology-based case study of inflation in which primordial non-Gaussianities can reveal aspects of supergravity.