The Abundance of Deuterium in the Warm Neutral Medium of the Lower Galactic Halo

Savage, Blair D.; Lehner, Nicolas; Fox, Andrew; Wakker, Bart; Sembach, Kenneth

United States, France

Abstract

We use high-resolution ultraviolet spectra to obtain Milky Way interstellar column densities of H I, D I, O I, S II, Fe II, and P II toward the QSO HE 0226-4110 in the Galactic direction l=253.4deg and b=-65.77deg. We obtain D/H=21+8-6 ppm from an analysis of the strong damped Lyα line of H I and the weak higher Lyman series absorption of D I. Correcting for a small amount of foreground contamination from D and H in the Local Bubble we obtain D/H=22+8-6 for the warm neutral medium of the lower Galactic halo. The medium sampled has [O/H]=0.12+0.41-0.20 and [Fe/H]=-1.01+0.10-0.09. This suggests the abundances in the gas in the halo toward HE 0226-4110 are not affected by the infall of low-metallicity gas and that the gas originates in the disk and is elevated into the halo by energetic processes that erode but do not totally destroy the dust grains. We compare our result to measured values of D/H in other astrophysical sites. The value we measure in the halo gas is consistent with the hypothesis that for many Galactic disk lines of sight D is incorporated into dust. The high average value of D/H=23.1+/-2.4(1 σ) ppm measured along five sight lines through disk gas in the solar neighborhood is similar to D/H in the lower Galactic halo. These disk and halo observations imply the abundance of deuterium in the Galaxy has only been reduced by a factor of 1.12+/-0.13 since its formation. In contrast, current galactic chemical evolution models predict the astration reduction factor should be in the range from 1.39 to 1.83.

2007 The Astrophysical Journal
eHST 21