Multiwavelength observations of PSR J2021+4026 across a mode change reveal a phase shift in its X-ray emission

Harding, A. K.; Kerr, M.; Marelli, M.; Razzano, M.; Saz Parkinson, P. M.; De Luca, A.; Mignani, R. P.; Testa, V.; Fiori, A.

Italy, United States, Poland

Abstract

Context. We have investigated the multiwavelength emission of PSR J2021+4026, the only isolated γ-ray pulsar known to be variable, which in October 2011 underwent a simultaneous change in γ-ray flux and spin-down rate, followed by a second mode change in February 2018. Multiwavelength monitoring is crucial to understand the physics behind these events and how they may have affected the structure of the magnetosphere.
Aims: The monitoring of pulse profile alignment is a powerful diagnostic tool for constraining magnetospheric reconfiguration. We aim to investigate timing or flux changes related to the variability of PSR J2021+4026 via multiwavelength observations, including γ-ray observations from Fermi-LAT, X-ray observations from XMM-Newton, and a deep optical observation with the Gran Telescopio Canarias.
Methods: We performed a detailed comparison of the timing features of the pulsar in γ and X-rays and searched for any change in phase lag between the phaseogram peaks in these two energy bands. Although previous observations did not detect a counterpart in visible light, we also searched for optical emission that might have increased due to the mode change, making this pulsar detectable in the optical.
Results: We have found a change in the γ-to X-ray pulse profile alignment by 0.21 ± 0.02 in phase, which indicates that the first mode change affected different regions of the pulsar magnetosphere. No optical counterpart was detected down to g' = 26.1 and r' = 25.3.
Conclusions: We suggest that the observed phase shift could be related to a reconfiguration of the connection between the quadrupole magnetic field near the stellar surface and the dipole field that dominates at larger distances. This is consistent with the picture of X-ray emission coming from the heated polar cap and with the simultaneous flux and frequency derivative change observed during the mode changes.

2023 Astronomy and Astrophysics
XMM-Newton 5