Helioseismic Holography of Active-Region Subphotospheres - (Invited Review)
Braun, D. C.; Lindsey, C.
United States
Abstract
The development of solar acoustic holography has opened a major new diagnostic avenue in local helioseismology. It has revealed `acoustic moats' surrounding sunspots, `acoustic glories' surrounding complex active regions, and `acoustic condensations' suggesting the existence of significant seismic anomalies up to 20 Mm beneath active-region photospheres. Phase-sensitive seismic holography is now yielding high-resolution maps of sound travel-time anomalies caused by magnetic forces in the immediate subphotosphere, apparent thermal enhancements in acoustic moats, and Doppler signatures of subsurface flows. It has given us the first seismic images of a solar flare, and has uncovered a remarkable anomaly in the statistical distribution of seismic emission from acoustic glories. Seismic holography will probably give us the means for early detection of large active regions on the far-surface of the Sun, and possibly of deep subsurface activity as well. This powerful diagnostic now promises a new insight into the hydromechanical and thermal environments of the solar interior in the local perspective.